

Scheme of Study

MS PROGRAM

Department of Physics

Karakoram International University

Table of Contents

MS.Scheme of studies	2
Classical Mechanics	3
Electrodynamics	5
Materials Science	6
Mathematical Methods of Physics	9
Quantum Mechanics	11
Radiation Physics	16
Research Methodology and Statistical Application	19
Statistical Physics	21

Faculty of Natural Sciences

Department of Physics

MS Scheme of Studies

Scheme of Studies for Spring Semester Year -I

S. No	Course Title	Course Code	Credit Hours
1.	Advanced Electrodynamics	Phys — 623	3(3-0)
2.	Advanced Quantum Mechanics	Phys — 634	3(3-0)
3.	Mathematical Methods of Physics	Phys — 653	3(3-0)
4.	Research Methodology & Statistical	Phys — 625	3(3-0)
	Applications		
Total			12

Scheme of Studies for Fall Semester Year -I

S. No	Course Title	Course Code	Credit Hours
5.	Radiation Physics	Phys — 617	3(3-0)
6.	Classical Mechanics	Phys — 612	3(3-0)
7.	Material Science	Phys — 613	3(3-0)
8.	Statistical Mechanics	Phys — 662	3(3-0)
	Total		12

Research (Thesis) Spring Semester Year-II

Research (Thesis) Fall Semester Year-II

Classical Mechanics

Course Code	Phys- 612		
Course Title & Credit Hours	Classical Mechanics (3 Cr Hrs)		
Name of Faculty (Name & Department)	Physics		
Program& Department (Course Offered in)	MS-2 years		
Prerequisites by Course(s) and Topics	Classical mechanics by Goldstine		
Assessment Instrument with Weights (Homework, Quizzes, Midterms, Final, Assignments, Presentations, Lab work, etc.)	Assignment+ Quizes 30% OHT-I + OHT-II 30% Final Term 40%		
Reference Material	 R. A. Serway and J. W. Jewett, "Physics for Scientists and Engineers", Golden Sunburst Series, 8th ed. 2010. R. A. Freedman, H. D. Young, and A. L. Ford (Sears and Zeemansky), "University Physics with Modern Physics", Addison-Wesley-Longman, 13th International ed. 2010 F. J Keller, W. E. Gettys and M. J. Skove, "Physics: Classical and Modern, McGraw Hill. 2nd ed. 1992. D. C. Giancoli, "Physics for Scientists and Engineers, with Modern Physics", Addison-Wesley, 4th ed. 2008. D. Halliday, R. Resnick, K. S. Krane, Physics, John Willey and sons, Inc, 1992. 		
Course Goals	 To give concept of vector and them Various properties. To give basic understanding of laws of motion and their applications in daily life. To give mathematical concept and expression of various physical parameters Used in mechanics. 		
Topics to be covered in the Course, with	Week 1 (03 Lectures) Survey of the elementary principles, Variational principles and Lagranges's equations,		

Classical Mechanics

Number of Lectures on Each	Week 2	Oscillations, The classical mechanics of the	
Topic	(03 Lectures)	special theory of relativity,	
(Assume 15-week instruction and	Week 3	Hamiltonian equations of motion,	
one-hour lectures)	(03 Lectures)	namilionian equations of motion,	
,	M L- 4		

(03 Lectures)	special theory of relativity,		
Week 3 (03 Lectures)	Hamiltonian equations of motion,		
Week 4 (03 Lectures)	canonical transformations,		
Week 5 (03Lectures)	Hamilton-Jacobi theory and Action angle variable,		
Week 6 (03 Lectures)	Classical Chaos		
Week 7 (03 Lectures)	Canonical perturbation theory,		
Week 8 (03 Lectures)	Introduction to the Lagrangian		
Week 9 (03 Lectures)	Hamiltonian formulations for continuous systems and fields, Lorentz invariance of Maxwell equations Theory relativity Four vectors System of particles and frame of references		
Week 10 (03Lectures)			
Week 11 (03Lectures)			
Week 12 (03 Lectures)			
Week-13 (03 Lectures)			
Week-14 (03 Lectures)	Centre of mass and laboratory coordinate systems		
Week-15 (03 Lectures)	Problems related with Lagrangian and Hamiltonian		

Assignments:

Each student will be given a topic to prepare an assignment just like a research report and will be graded accordingly.

Quizes:

End of each chapter there will be quizes.

Attendance:

At least 75% attendance is compulsory to sit in the midterm and final term examination

Electrodynamics

Karakoram International University, Gilgit – Baltistan

Department of Physics

Course name: Electrodynamics (Phys - 623)

Course code: 03 Credit Hours

Marks distribution:

Quizzes (announced and surprise)	30 %
OHT1+OHT2	30 %
Final Term Exam	40 %

Recommended Books:

- 1. Classical Electrodynamics by J. D. Jackson (3rd Edition), Wiley 1998
- 2. Modern Electrodynamics by Andrew Zangwill Cambridge university press, first published 2012

The Maxwell Equations Introduction (electric charge, electric current, Conservation of Charge) The Maxwell Equations in Vacuum (Electrostatics, The Field Concept, Magnetostatics, Faraday's Law, The Displacement Current, Maxwell Equations),	1 st week
Microscopic vs. Macroscopic (Lorentz Averaging, The Macroscopic Surface, Matching Conditions), The Maxwell Equations in Matter (Macroscopic Sources and Fields, Microscopic Fields),	2 nd week
Quantum Limits and New Physics (Quantized Matter, Vacuum Polarization, Quantum Fluctuations, New Physics, Magnetic Charge), SI Units, A Heuristic Derivation	3 rd week
General Electromagnetic Fields Introduction, Symmetry (Discrete Symmetries, Dual Symmetry, Continuous Symmetries), Electromagnetic Potentials (Gauge Invariance, The Coulomb Gauge, The Lorenz Gauge),	4 th week
Conservation of Energy (The Poynting Vector and Field Energy Density, Energy Flow in Resistive Wires, Non-Uniqueness of the Poynting Vector),	5 th week
Conservation of Linear Momentum (The Mechanical Force on a Volume, Momentum Density and Momentum Current Density)	6 th week
Conservation of Angular Momentum, The Center of Energy, Conservation Laws in Matter, The Force on Isolated Matter	7 th week
Waves in Vacuum Introduction, The Wave Equation, Plane Waves, Polarization, Wave Packets,	9 th week
The Helmholtz Equation, Beam-Like Waves, Spherical Waves2, Hertz Vectors, Forces on Particles in Free Fields	10 th week
Waves in Simple Matter Introduction, Plane Waves, Reflection and Refraction, Radiation Pressure,	11 th week
Layered Matter, Simple Conducting Matter, Anisotropic Matter	12 th week
Waves in Dispersive Matter Introduction, Frequency Dispersion, Energy in Dispersive Matter, Transverse and Longitudinal Waves,	13 th week
Classical Models for Frequency Dispersion, Wave Packets in Dispersive Matter, The Consequences of Causality, Spatial Dispersion	14 th week
Final Term Exam	15 th week

Materials Science

Course code		Physics613	
Course Title & C	Credit Hours	Materials Science	
Name of Faculty (Name & Department)			
Program & Dep	oartment (Course Offe	ered in) MS Physics	
Prerequisites of	the Course	solid state Physics.	
(Homework, Qı	truments with Weights uizzes, Midterms, Final, resentations, Lab work	OHT1+OHT2 30%	
Textbook		e and Engineering an Introduction, by W. D. Callister, Jr., ey & Sons Inc (2007)	
Reference Material	 The Physics and Chemistry of Materials, by J. I. Gersten and F. W. Smith, publisher John Wiley & Sons Inc (2001) Fundamentals of Ceramics, by M. W. Barsoum, IOP Publishing Ltd (2003) The Physics of Amorphous Solids, by Richard Zallen, publisher John Wiley & Sons Inc. (1998). An Introduction to Polymer Physics, D. I. Bower, publisher Cambridge University Press, Cambridge (2002). Materials Science of Thin Films, by M. Ohring, (2nd edition) publishers Academic Press (2002) Soft Condensed Matter, R. A. L. Jones, publishers Oxford University Press (2002) 		
Course Objectives		the basic of the nanotechnology to applications with the characterization of the nanomaterials.	
Topics to be covered in the Course, with Number of Lectures on Each	Week 1 (02 Lectures)	 Materials Science and Engineering Why Study Materials Science and Engineering? Processing/Structure/Properties/Performance Classification of Materials Historical Perspective 	
Topic (Assume 15- week instruction	Week 2 (02 Lectures)	 Introduction ATOMIC STRUCTURE 2.2 Fundamental Concepts 2.3 Electrons in Atoms 2.4 The Periodic Table 	

Materials Science

and one-hour lectures)		 ATOMIC BONDING IN SOLIDS 2.5 Bonding Forces and Energies 2.6 Primary Interatomic Bonds 2.7 Secondary Bonding or van der Waals Bonding Materials of Importance—Water (Its Volume Expansion Upon Freezing) 2.8 Molecules
	Week 3 (02 Lectures)	 Basic Structural and Symmetry Concepts, Concept of Diffraction in a Periodic Lattice,
	Week 4 (02 Lectures)	 Structural Information from X-ray Diffraction Other Diffraction Techniques. Crystal Structures of Metals and Ceramic Materials.
	Week 5 (02 Lectures)	• Point Defects (vacancies, interstitials, impurities, F-centres) and their stability
	Week 6 (02 Lectures)	 Line and Extended Defects (Dislocations, Grain Boundaries, Stacking Faults, Interfacial, Surface and Volumetric Defects). Effect of Defects on the Properties of Materials.
	Week 7 (02 Lectures)	 Amorphous Materials/Glasses (Glass formation, Glass Transition and Crystallization of Glasses, Various Glass Forming Systems).
	Week 8 (02 Lectures)	 Random Closed Packing in Metallic Glasses, Continuous Random Network in Covalent Glasses.
	Week 9 (02 Lectures)	 Basic Concepts, Equilibrium Phase Diagrams, Phase Transformations – Basic Concepts, Kinetics, Metastable versus Stable Transformations, Microstructure Development,
	Week 10 (02 Lectures)	 Precipitation and Dispersion Hardening, Multi Component and Multi Phase Systems, Alloys, Equilibrium Structures, Phase Separation.

Materials Science

Week 11 (02 Lectures)	 Geometry of Interfaces, Coherent and Commensurate Interfaces, Stacking Period and Interplanar Spacing, Defects on Surfaces, Experimental Determination and Creation of Surfaces, 	
Week 12 (02 Lectures)	 Surface Characterization Techniques (LEED, RHEED, MBE, STM and AFM) and Their Principles. 	
Week-13 (02 Lectures)	 Introduction to Soft Matter, Colloidal Dispersions, Gels and Gelation, Liquid Crystals; Structures and Textures in Liquid Crystals. Polymers; 	
Week-14 (02 Lectures)	 Molecular Weight, Molecular Structure, Stereo and Geometric Isomerism, Thermoplastics, Thermosets and Elastomers, 	
Week-15 (02 Lectures)	 Crystallinity of Polymers, Copolymers, Biological Molecules, Concept of Self Assembly in Block Copolymers and Biomolecules. 	

Assignments:

Each student will be given a topic to prepare an assignment just like a research report and will be graded accordingly.

Presentations:

Each student will present in the class about topic assigned to him/her as assignment. This will be graded accordingly on the basis of content, communication skill, way of presentation and answers to the questions asked.

Attendance:

At least 70% attendance is compulsory to sit in the midterm and final term examination

Mathematical Methods of Physics

MS Program

Course name: Mathematical Methods of Physics (03 Credit hours) Course Code: 653 Marks distribution:

Assignments+Quizzes+Presentation	30 %
OHT1+OHT2	30 %
Final Term Exam	40 %

Objective(s):

To give the understanding of Differential equations and their uses in Physics, Introduction to special functions, Fourier Series, Fourier Transforms, Solution of Boundary value problems and their uses.

Recommended Books:

- 1. 1. Mathematical Methods for Physicists, Arfken & Weber (Academic Press, 6th edition, 2005).
- 2. 2. Mathematical Methods for Physicists, Tai L. Chow (Cambridge University Press, 2002).

Fourier series: introduction and general properties, convergence of trigonometric series	02 Lectures
Gibbs phenomenon, Parseval's theorem, applications to various phenomena.	02 Lectures
Integral transform, development of the Fourier integral, Fourier transform, inversion theorems	02 Lectures
Fourier transform of derivatives, convolution theorem, momentum representation, transfer functions	02 Lectures
Complex arguments in Fourier transforms. Laplace transform, Laplace transform of derivatives,	02 Lectures
Convolution products and Faltung's theorem, inverse, Laplace transform.	02 Lectures
Partial differential equations. Separation of variables in three dimensions,	02 Lectures

Mathematical Methods of Physics

method of characteristics. Boundary value problems.	
Integral transforms, generating functions, Neumann series, separable	02
(degenerate) kernels, Hilbert-Schmidt theory, integral equations.	Lectures
Calculus of variations: dependent and independent variables, Euler-	02
Lagrange equation and applications	Lectures
Several independent and dependent variables, Lagrange multipliers,	02
variational principle with constraints	Lectures
Rayleigh–Ritz variational technique, application to discrete mesh	02
	Lectures
Nonlinear methods and chaos, the logistic map,	02
	Lectures
Sensitivity to initial conditions and parameters, nonlinear differential	02
equations.	Lectures
Probability: definitions and simple properties, random variables,	02
	Lectures
Binomial distribution, Poisson distribution, Gauss's normal distributions,	02
statistics.	Lectures

Course Code	Phys - 634
Course Title & Credit Hours	Quantum Mechanics 3Cr.h
Name of Faculty (Name & Department)	
Program & Department (Course Offered in)	MS- Physics (2 year)
Prerequisites by Course(s) and Topics	Quantum mechanics
Assessment Instruments with Weights (Homework, Quizzes, Midterms, Final, Assignments, Presentations, Lab work, etc.)	Assignment+ Quizes 30% OHT-I + OHT-II 30% Final Term 40%
Textbook (or Laboratory Manual for Laboratory Courses)	 Modern Quantum Mechanics (2nd Edition) by J. J. Sakurai, Jim J. Napolitano, Addison- Wesley, 2010. Principles of Quantum Mechanics (2nd Edition) by R. Shankar, Plenum Press, 1994. Quantum Mechanics by Dirac, P. A. M (Oxford University Press Quantum Mechanics (Vol. 1) by Claude Cohen- Tannoudji, Bernard Diu, Frank Laloe, Wiley- VCH, 1992.
Reference Material	 B.H. Bransden & C.J. Joachain, Introduction to Quantum Mechanics' Longman Scientific & Technical London (1990) J.S. Townsend, A Modern Approach to Quantum Mechanics' McG raw Hill Book Company, Singapore (1992). Wesley publishing Company, Reading Mass.(1980). R.L. Liboff, 'Introductory Quantum mechanics.' Addison Wesley Publishing Company, Reading Mass (1980) Bialynicki-Birula, M. Cieplak & J. Kaminski, 'Theory of Wuantua', Oxford university press, New York (1992).

		Greiner Relativistic Quantum Mechanics'. Springer Verlag, lin (1990)	
		chwable, ' Quantum Mechanics', Narosa publishing House,	
	New Delhi (1992)		
	8. David J. Grifffiths, Introduction to Quantum Mechanics,		
		ENTICE Hall, Int., Inc.	
		Gasiorowicz, Quantum physics, John Wiley & Sons, Inc,	
		gapore.	
	,		
Course Goals		understand the uses of approximation in Quantum	
		understand the theory of scattering and interaction of	
		antum systems with radiation	
	3. To	understand the basics of relativistic quantum mechanics	
Topics to be covered	Week 1		
in the Course, with	(01	Waves and particles: Introduction to fundamental	
Number of Lectures on	Lectures)	idea of Quantum mechanics.	
Each Topic (Assume		Electromagnetic waves and photons; Light quanta and the plank-Einstein relations, wave particle	
15-week instruction		duality, Analysis of young double slit experiment,	
and one-hour		Quantum unification of two aspect of light, The	
lectures)		Principle of spectral decomposition, Material	
		particle and matter waves; The de Broglie	
	Week 2 (01	relations, Wave functions: the Schrodinger	
	Lectures)	equation, Quantum description of a particle Wave	
	_	packets; Free particle, Form of the wave packet at	
		given time, Heisenberg uncertainty relation, Time	
		evolution of free wave packet, Particle in a time independent Scalar potential; Separation of	
		variables. Stationary states, one dimensional	
		square potential	
		Order of magnitude of the wave length associated	
		with the material particle, Constraints imposed by	
		the uncertainty relation, the uncertainty relation	
		and the atomic parameters, An experiment	
	Week 3	illustrating the uncertainty relation, A simple	
	(01 Lectures)	treatment of a two dimensional wave packet, the relation between one and three dimensional	
	100.0.03)	problem, One dimensional Gaussian wave	
		packet: spreading of wave packet, Stationary	
		state of a particle in one dimensional square well,	
		behavior of wave packet at a potential step.	
	Week 4	The mathematical tool of quantum mechanics:	
	(01	One particle wave function space; Structure of the wave	
	Lectures)	function space, Discrete orthonormal basis in wave function	

		space, Introduction of basis not belonging to wave function space, State Space: Dirac notation; introduction, ket vectors and bra vectors, Linear operators, Hermitian conjugation Representation in the state space; Relation characteristic of an orthonormal basis, Representation of kets and bras, Representation of operators, Eigen value equation: Observables; Eigen values and Eigen vectors of an operators, Observables, Sets of commuting observables, Two important example of representation and observables; {Ir>} and {Ip>} repsentations, The R and P representation.
	Veek 5 (01 ectures)	The Schwartz inequality, Review of some useful properties of linear operator, Unitary operators, A more detail study of {Ir>} and {Ip>} repsentations, Some general properties of two observables, Q and P, The parity operator.
V	Veek 6 (01 e ct ur es)	The postulates of quantum mechanics: Introduction, Statement of the postulates; Description of the state of the system, Description of a physical quantities, the measurement of a physical quantities, time evolution of a system, Quantization rule, the physical interpretation of the postulates, Postulates concerning observables and their measurements,
	Veek 7 (01 ectures)	Quantization of certain physical quantaties, The measurement process, mean value of an observable, The root mean square deviation, Compatibility of observables, The physical implication of the Schrodinger equation; General properties of Schrodinger equation, The case of conservative system, The superposition principle and Physical prediction; Probability amplitudes and interference effects, Case in which several states can be associated with the same measurement result.
	Veek 8 (01 essions)	Practical in infinite potential well, Study of the probabity current in some special cases, Root mean square deviation of two conjugate observables, measurements bearing on only one part of a physical system, The density operator, The evolution operator, The Schrodinger and Heisenberg picture, The Gauge invariance, Propagator for the Schrödinger equation.
v	Veek 9	Application of the postulate to the simple cases: Spin1/2 and two-level system.

Week 10 (01 Le ct ur es)	Spin1/2 particle: Experimental demonstration, Quantization of the angular momentum, theoretical description, Illustration of the postulate in the case of a spin1/2; Actual preparation of a various spin states, spin measurements, Evolution of spin ½ in a uniform magnetic field, General study of two-level system; Outline of the problem, Static aspect, Dynamical aspect: oscillation of the system between two unperturbed state.
Week 11 (02 Weeks)	Pauli matrices, Diagnalization of 2cross2 matrices, Fictitious spin1/2 associated with two level system, system of two spin ½ particles, spin ½ density matrix, spin ½ particles in a static magnetic field and a rotating field, A simple model of ammonia molecule, coupling between a stable and unstable state.
Week 12 (01 Lectures)	The one-dimensional harmonic oscillator: Introduction; Importance of harmonic oscillator in physics, the harmonic oscillator in classical mechanics, General properties of quantum mechanical Hamiltonian, Eigen values of the Hamiltonian; Notation, Determination of the spectrum, Degeneracy of the eigen values, Eigen State of the Hamiltonian; The {IΦn>} representation, Wave function associated with the stationary state, Discussion; Mean value and root mean square deviation of X and P in a state {IΦn>}, Properties of the ground state, Time evolution of mean values
Week-13 (01 Lectures)	Some example of harmonic oscillator, Study of the stationary state in the {Ir>} representation, Solving the eigen value equation of the harmonic oscillator by the polynomial method, Study of the stationary state in the {Ip>} representation, the isotropic three-dimensional harmonic oscillator, A charged harmonic oscillator in uniform electric field, Coherent quasi classical state of harmonic oscillator.
Week-14 (01 Lectures)	General properties of angular momentum in Quantum mechanics: Introduction; The importance of angular momentum, Commutation relation; Orbital angular momentum, Generalization. definition of angular momentum, Statement of the problem, General theory of angular momentum; Definition and notation, Eigen values of J^2 and J_z , Standard {lk, j, m>}

the problem, Separation of variable, Stationary state of the particle in a central, Motion of the centre of mass and Relative motion for a system of two Interacting particle; Motion of the centre of mass and Relative motion in Classical mathematics, Separation of variable in Quantum mechanics, The hydrogen atom; Introduction, The Bohr model, Quantum mechanical theory of the hydrogen atom, Discussion of the result. Hydrogen like system, a soluble example of the central potential, Probability current associated with the stationary state of the hydrogen atom, the hydrogen atom placed in a uniform magnetic field, Study of some atomic orbitals. Hybrid orbitals, Vibrational —rotational levels of diatomic molecules.		representation, Application to the orbital angular momentum; Eigen values and eigen function of L^2 and L_z , physical consideration. Spherical harmonics, Angular momentum and rotation, Rotation of diatomic molecules, Study of the stationary state in the {lp>} representation, Angular momentum of stationary state two-dimensional harmonic oscillator, A charged particle in magnetic field: Landau levels. Particle in a central potential: the hydrogen atom:
	(01	state of the particle in a central, Motion of the centre of mass and Relative motion for a system of two Interacting particle; Motion of the centre of mass and Relative motion in Classical mathematics, Separation of variable in Quantum mechanics, The hydrogen atom; Introduction, The Bohr model, Quantum mechanical theory of the hydrogen atom, Discussion of the result. Hydrogen like system, a soluble example of the central potential, Probability current associated with the stationary state of the hydrogen atom, the hydrogen atom placed in a uniform magnetic field, Study of some atomic orbitals. Hybrid orbitals, Vibrational —rotational levels of diatomic

Assignments:

Each student will be given a topic to prepare an assignment just like a research report and will be graded accordingly.

Presentations:

Each student will present in the class about topic assigned to him/her as assignment. This will be graded accordingly on the basis of content, communication skill, way of presentation and answers to the questions asked.

Attendance:

At least 75% attendance is compulsory to sit in the midterm and final term examination

Course Code	PHYS-617	
Course Title & Credit Hours	Radiation Physics, 3Cr.h	
Name of Faculty	Physics, KIU	
(Name & Department)		
Program & Department (Course Offered in)	MS- Physics (2 year)	
Prerequisites by Course(s) and Topics	Not Applicable	
Assessment Instruments with Weights (Homework, Quizzes, Midterms, Final, Assignments, Presentations, Lab work, etc.)	Assignment+Quiz+Ppt 30% OHT1+OHT2 30% Final Term 40%	
Textbook (or Laboratory Manual for Laboratory Courses)	 Physics for Radiation Protection (2nd Edition) by James E. Martin (2006) An Introduction to Health Physics (4th Edition) By Herman Cember, (2002) 	
Reference Material	 Introduction to Nudear Engineering (3rd Edition) By Lamarsh, (1998) Measurement and Detection of Radiation (2nd Edition) Nicholas Tsoulfanidis, Taylor & Francis (1995) Radiation Detection and Measurement (3rd edition) By Glenn F. Knoll (2006) Radiation Oncology Physics: A handbook for Teachers and Students by E B Podgorsak Sponsored by IAEA 	
Course Goals	This unit will cover (i) Understanding various kinds of Radiations (ii) Sources of Radiations specially Gamma Rays (iii) How radiations; alpha, beta, gamma, neutrons and comic rays interact with matter (iv) Their detection and measurement (v) Health effects of ionizing radiations (vi) Radiation Protection & Shielding	
Topics to be covered in the Course, with Number of Lectures	Week 1 (02 Lectures)	Sources of Radiation • Discovery of radiation

on Each Topic (Assume 15-week		Types of ionizing radiation
instruction and one-hour lectures)		Sources of Ionizing Radiations
	Week 2 (02 Lectures)	•
	Week 3 (02 Lectures)	 Mechanisms of Radiation emission Transformation Kinetics attenuation, half-value layer Linear attenuation coefficient Mass attenuation coefficient Thomson scattering
	Week 4 (02 Lectures)	 Interaction of radiation with matter Alphas, betas, gammas, nutrons
	Week 5 (02 Lectures)	 Dosimetric quantities Fluence Absorbed dose Kerma Interrelationships of units
	Week 6 (02 Lectures)	Collision stopping powerRangeMean stopping power
	Week 7 (02 Lectures)	Charged particle interactions
	Week 8 (02 Sessions)	 Radiation Detection Instuments HPGe TLDs Survey meters
	Week 9	Biological Effects of Ionizing Radiations
	Week 10	 Biological basis for Radiation

(02 Lectures)	Safety.
Week 11 (02 Weeks)	Radiation standards and Laws
Week 12 (02 Lectures)	Review research papers
Week-13 (02 Lectures)	Review research papers
Week-14 (02 Lectures)	 Lab Work, hands on study of radiation dosimetery
Week-15 (02 Sessions)	 Lab Work, hands on study of radiation dosimetery

Assignments: Assignment will be given every week .the student will have to submit the assignment in the next class. Assignment will be graded on the basis of quality and timely submission.

Attendance:

75% attendance is compulsory to sit in the midterm and final term examination

Research Methodology and Statistical Application

Course Code	PHY-625		
Course Title & Credit	Research Met	thodology 03 Credit Hours	
Hours			
Name of Faculty	Department of	of Physics KIU.	
(Name & Department)			
Program & Department	Department of	of Physics,	
(Course Offered in)			
Prerequisites by	English, Stati	stics and Mathematics	
Course(s) and Topics			
Assessment Instruments	OHT(1+2)	30%	
with Weights	Final Teri	m 40%	
	Assignme	nt /Quizzes/Presentation 30%	
Reference Textbook		roduction to research methodology (recommended books), ch Methodology (Methods and Techniques), Second Revised	
		n, C.R Kothari,	
		roduction to Research	
	Methods(Graduate Studies and Research Office		
	Addis Ababa University), compiled by		
	Abiy Zegeye, Alemayehu Worku, Daniel Tefera, Melese Getu, Yilma Sileshi		
Reference Material	1. X	Silesiii	
Course Goals	understand the fundamentals of research and methods used in the		
Course Cours	entific writings.		
	S	An Introduction Meaning of Research, Objectives of	
		Research	
		Motivation in Research, Types of Research	
		Research Approached, Significance of Research	
	Week (1)	Research Methods versus Methodology	
	(01 Lectures)	Research and Scientific Method	
	Lectures)	Importance of Knowing How Research is Done	
		Research Process, Criteria of Good Research	
		Problems Encountered by Researchers in Pakistan	
		Comparison to Developed World.	
	Week 1	Defining the Research Problem, What is a Research Problem?	
	(01	Selecting the Problem, Necessity of Defining the Problem	
	Lectures)	Technique Involved in Defining a Problem, An Illustration	
		Research Design, Meaning of Research Design	
	Week 2	Need for Research Design, Research Methodology	
	(02	Features of a Good Design	
	Lectures)	Important Concepts Relating to Research Design	
		Different Research Designs	

Research Methodology and Statistical Application

تعيد قراقرم انتريش يدينوري والم		D ' D' ' 1 CD ' · 1D '
International Uni		Basic Principles of Experimental Designs
		Developing a Research Plan
	Week 3 (02	Methods of Data Collection
		Collection of Primary Data
		Observation Method
	Lectures)	Some Other Methods of Data Collection
		Collection of Secondary Data
		Selection of Appropriate Method for Data Collection
		What is a scientific research proposal? Scientific Research
		Proposal Format, Common Mistakes in Writing a Scientific
		Research Project Proposal, Scientific Research Proposal
		Example, introduction to standard SOPs, LOI, Personal
		statement, Different Steps in Writing Report
		Layout of the Research Report
		Types of Reports/scientific writings
	Week 4-6	Oral Presentation, Aim and motivation - Principles and
	(06 Lectures)	ethics, Literature survey – Abstraction of a research paper –
	Lectures)	Access using Internet web tools - e-mail - Impact and
		usefulness of the research problem – Role of research guide –
		Guidance and rapport - Preparation and presentation of
		Scientific reports; need and methods – Power point and poster
		– Writing of synopsis and dissertation and thesis. Plagiarism
		checking, research articles(letters, reports, review articles,
		communication and abstract image)
	Week 7-9	immentant to all to you date analysis (sylisis)
	(06Lecture)	important tools to use data analysis (origin)
		Important tools for bibliography of scientific writings (use of
	(06 Lectures)	endnote, mendelay desktop for references), styles of
		references, adjusting the styles from the given software, ethics
	Lectures)	and roles in references and citations.
	Week-13-16	One complete project by utilizing all the knowledge and
	(08 Lectures	information as gain from the previous all sections.
)		

Assignments: Every Student shall be responsible to submit the given assignments. **Assignments submitted after the due dates shall be graded as zero marks. Apology shall not be entertained.**

Quizzes: There shall be quizzes after completion of every chapter, decided during the semester teaching. Be alert to take (write) your quiz on the announce date. There shall be no makeup quizzes, students remain absent in the quizzes shall be graded as zero marks. Apology shall not be entertained.

Attendance: At least 80% attendance is compulsory to write the midterm and semester examination.

Meetings with Students: Students are free to meet with the course Instructor to discuss the course related issues.

Course Code	PHY-662		
Course Title & Credit Hours	Statistical Physics 3Cr.h		
Name of Faculty	Department of Physics KIU.		
(Name & Department)			
Program & Department	Department of Physics, MS-II		
(Course Offered in)			
Prerequisites by Course(s)	Heat and Thermodynamics		
and Topics			
Assessment Instruments with	OHT1+OH7		
Weights	Final Term	40%	
	Assignment /Quizzes 30%		
Textbook	Introduction to Statistical Physics, Kerson Huang, (Taylor and Francis, 2001).		
Reference Material	 Statistical Mechanics, Raj Kumar Pathria, 2 nd edition (India, 1996). 		
Course Goals	understand the fundamentals of heat and thermodynamics.		
	Week 1 (02 Lectures)	Intensive and extensive quantities, thermodynamic variables, thermodynamic limit, thermodynamic transformations.	
	Week 2 (02 Lectures)	Classical ideal gas, first law of thermodynamics, application to magnetic systems, heat and entropy, Carnot cycle.	
	Week 3 (02 Lectures)	Second law of thermodynamics, absolute temperature, temperature as integrating factor, entropy of ideal gas.	
	Week 4 (02 Lectures)	The energy equation, Conditions for equilibrium, Helmholtz free energy, Gibbs potential.	
	Week 5 (02 Lectures)	Maxwell relations, chemical potential. First-order phase transition, condition for phase coexistence.	
	Week 6 (02 Lectures)	The statistical approach: phase space, distribution function, micro-canonical ensemble, the most probable distribution, Lagrange multipliers.	
	Week 7 (02Lectures)	Maxwell-Boltzmann distribution: pressure of an ideal gas, equipartition of energy.	
	Week 8 (02Lectures)	Entropy, relation to thermodynamics, fluctuations, Boltzmann factor.	
	Week 9 (02Lectures)	Transport phenomena: collisionless and hydrodynamic regimes, Maxwell's demon, non-viscous hydrodynamics,	
	Week 10 (02Lectures)	Sound waves, diffusion, conduction, viscosity.	

Statistical Physics

- Telligite		
	Week 11 (02 Weeks)	Quantum statistics: thermal wavelength, identical
		particles, Fermi and Bose statistics, pressure, entropy,
		free energy, equation of state,
	Week 12	Fermi gas at low temperatures, application to electrons
	(02 Lectures)	in solids and white dwarfs.
	Week-13 (02 Lectures)	The Bose gas: photons, phonons, Debye specific heat,
		Bose-Einstein condensation, equation of state, liquid
		helium.
		Canonical and grand canonical ensembles, partition
	Week-14	function, connection with thermodynamics,
	(02 Lectures)	fluctuations. Minimization of free energy, photon
		fluctuations, pair creation.
		The order parameter, Broken symmetry, Ising spin
	Week-15	model, Ginsburg Landau theory, mean-field theory,
	(02 Lectures)	critical exponents, fluctuation-dissipation theorem,
		correlation length, universality.
Assignments: Every Student shall be responsible to submit the given assignments. Assignments		
submitted after the due dates shall be graded as zero marks. Apology shall not be entertained.		
Quizzes: There shall be quizzes after completion of every chapter, decided during the semester teaching.		
D. J. 44, 4, 1, 7, 24, 5,, 2,, 41,,, 1, 4, 75,, 1, 111,,, 1,, 2,, 4, 1, .4,		

Be alert to take (write) your quiz on the announce date. There shall be no makeup quizzes, students remain absent in the quizzes shall be graded as zero marks. Apology shall not be entertained.

Attendance: At least 80% attendance is compulsory to write the midterm and semester examination.

Meetings with Students: Students are free to meet with the course Instructor to discuss the course related issues.